

BAULKHAM HILLS HIGH SCHOOL

2015 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 120 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-14
- Marks may be deducted for careless or badly arranged work

Total marks – 70 Exam consists of 11 pages.

This paper consists of TWO sections.

<u>Section 1</u> – Page 2-4 (10 marks) Questions 1-10

• Attempt Questions 1-10 Allow about 15 minutes for this section.

Section II – Pages 5-10 (60 marks)

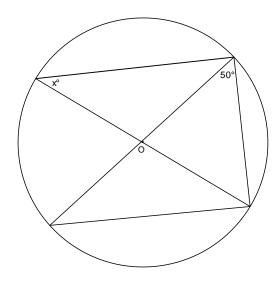
Attempt questions 11-14
 Allow about 1 hour and 45 minutes for this section.

Table of Standard Integrals is on page 11

Section I - 10 marks

Use the multiple choice answer sheet for question 1-10

1. If O is the centre of the circle, the value of x in the following diagram is:



- (A) 25°
- (B) 40°
- (C) 50°
- (D)) 80°

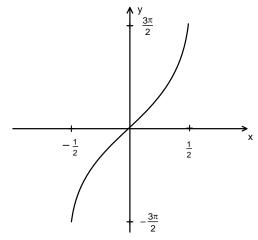
2. The point P divides the interval AB externally in the ratio 3:2. If A(-2,2) and B(8,-3) what is the y coordinate of the point P?

- (A) -13
- (B) -1
- (C) 4
- (D) 28

3. How many distinct arrangements of the letters of the word ALGEBRA are possible in a straight line if the A's are separated.

- (A) 720
- (B) 1800
- (C) 2160
- (D) 2520

- 4. The polynomial $P(x) = x^3 6x^2 2x + k$ has a factor of x + 2. What is the value of k?
 - (A) -28
 - (B) -20
 - (C) 20
 - (D) 28
- 5. The acute angle between the lines 4x + y = 2 and y = 2x 1 to the nearest degree is :
 - (A) 12°
 - (B) 13°
 - (C) 40°
 - (D) 41°
- **6.** The equation of an inverse trig function drawn below is :



- (A) $y = \frac{1}{3} \sin^{-1} \frac{x}{2}$
- (B) $y = \frac{1}{3}\sin^{-1}2x$
- (C) $y = 3\sin^{-1}\frac{x}{2}$
- (D) $y = 3\sin^{-1}2x$
- 7. A particle moving in simple harmonic motion with displacement x and velocity v, is given by $v^2 = 9(16 x^2)$. What is its amplitude (A) and its period (T)?
 - (A) A=3 T= $\frac{\pi}{2}$
 - (B) A=3 T= $\frac{2\pi}{3}$
 - (C) A=4 $T = \frac{\pi}{2}$
 - (D) A=4 $T = \frac{2\pi}{3}$

$$\int \frac{1}{\sqrt{25 - 4x^2}} dx =$$

(A)
$$\frac{1}{2}\sin^{-1}\frac{2x}{5} + c$$

(B)
$$\frac{1}{2}\sin^{-1}\frac{4x}{25} + c$$

(C)
$$\frac{1}{4}\sin^{-1}\frac{2x}{5} + c$$

(D)
$$\frac{1}{4}\sin^{-1}\frac{4x}{25} + c$$

9.

The derivative of $tan^{-1}x^4$ is:

$$(A) \ \frac{1}{1+x^8}$$

(B)
$$\frac{4x^3}{1+x^8}$$

(C)
$$4(\tan^{-1}x)^3$$

(D)
$$\frac{4(\tan^{-1}x)^3}{1+x^2}$$

10.

The solution to $|2x - 1| \le |x - 2|$ is

(A)
$$x \le -1$$

(B)
$$x \ge 1$$

(C)
$$-1 \le x \le 1$$

(D)
$$x \le -1$$
 or $x \ge 1$

End of Section 1

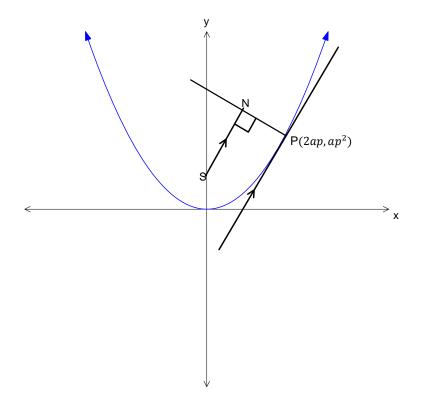
Section II – Extended Response All necessary working should be shown in every question.

Question 11 (15 marks) - Start on the appropriate page in your answer booklet		
a)	Solve $\frac{2}{3x-1} \le 1$	3
b)	Find $\int \frac{2x \ dx}{(2x+1)^2}$ using the substitution $u = 2x + 1$	3
c)	Evaluate $\lim_{x\to 0} \frac{\sin\frac{1}{2}x}{3x}$	2
d)	Find the constant term in the expansion $\left(2x + \frac{3}{x^3}\right)^8$.	2
e)	(i) Show that a root of the continuous function $f(x) = x + \frac{1}{2}\sin 2x - \frac{\pi}{4}$ lies between 0.4 and 0.5.	1
	(ii) Hence use one application of Newton's method with an initial estimate of $x = 0.4$ to find a closer approximation for the root to 2 significant figures.	2
f)	Solve $\sin 2\theta = \cos \theta$ for $0 \le \theta \le 2\pi$	2
	End of Question 11	

Question 12 (15 marks) - Start on the appropriate page in your answer booklet		Marks
a)	Evaluate $\int_0^{\frac{\pi}{8}} \sin^2 2x \ dx$	3
b)	(i) From a group of 6 boys and 6 girls, 8 are chosen at random to form a group. How many different groups of 8 people can be formed?	1
	(ii) How many of these groups consist of 4 boys and 4 girls?	1
	(iii) 4 boys and 4 girls are chosen and placed around a circle. What is the probability that the boys and girls alternate?	2
c)	The rate of change of the temperature (T) of an object is proportional to the difference between the temperature of the object and the temperature of the surrounding medium(C) ie	,
	$\frac{dT}{dt} = k(T - C)$	
	An object is heated and placed in a room of temperature $20^{\circ}C$ to cool. After 10 minutes i temperature is $36^{\circ}C$. After 20 minutes the temperature is $30^{\circ}C$.	es
	(i) Show $T = C + Ae^{kt}$ is a solution to the differential equation above.	1
	(ii) Find the value of A and the value of k to 3 decimal places.	3
	(iii) What was the temperature of the object when it was first placed in the room?	1
d)	Prove $ (1)(3)(5) \dots \dots \dots \dots \dots (2n+1) = \frac{(2n+1)!}{2^n n!} \text{ for } n \ge 0 \text{ by mathematical induction.} $	3
	End of Question 12	

Question 13		(15 marks) - Start on the appropriate page in your answer booklet	Marks		
a)	The polynomial $P(x) = x^3 - 6x^2 + kx - 8$ has roots α , β and γ .				
	Find: (i)	$\alpha + \beta + \gamma$	1		
	(ii)	$\alpha^2\beta\gamma + \alpha\beta^2\gamma + \alpha\beta\gamma^2$	2		
	(iii)	k if $P(x)$ has a triple root.	2		

b) PN is the normal to the parabola $x^2 = 4ay$ at the point P $(2ap, ap^2)$. The normal intersects the line SN which is parallel to the tangent at P. S is the focus of the parabola.



(i) Show the equation of the normal PN is $x + py = 2ap + ap^3$.

2

(ii) Find the equation of the line *SN*.

1

(iii) Show that N has coordinates $(ap, ap^2 + a)$.

2

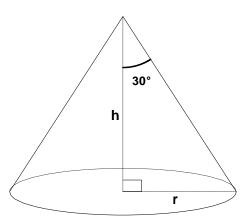
(iv) Find the equation of the locus of N as P moves on the parabola.

2

Question 13 continues on the following page

c) Sand is falling on the ground forming a conical pile whose semi apex angle is 30°.

The volume of the pile is increasing at a rate of $\frac{\pi}{100} m^3/s$. $(V = \frac{1}{3} \pi r^2 h)$



(i) Show that the volume of the pile is given by: $V = \frac{\pi h^3}{9}$

1

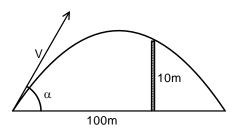
2

(ii) Find the rate at which the height of the pile is increasing when the height of the pile is 2 metres.

End of Question 13

Question 14 (15 marks) - Start on the appropriate page in your answer booklet

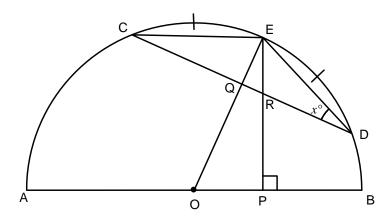
a)



A projectile is fired from the ground with an angle of projection given by $\alpha = \tan^{-1} \frac{3}{4}$ and initial velocity V.

It just clears a wall 10m high 100m away. Let acceleration due to gravity be $g=10\text{ms}^{-2}$.

- (i) Show that the equations of motion are $x = \frac{4Vt}{5}$ and $y = -5t^2 + \frac{3Vt}{5}$.
- (ii) Find the initial velocity, V of the projectile.
- (iii) At what speed is the projectile travelling the instant it clears the wall?
- b) Copy or trace the diagram below in your exam booklet.



E is the midpoint of the arc CD. The radius OE meets CD at Q. EP is perpendicular to the diameter AB and meets CD at R.

(i) If $\angle CDE = x^{\circ}$, show $\angle EOD = 2x^{\circ}$.

(ii) Prove *OPRQ* is a cyclic quadrilateral.

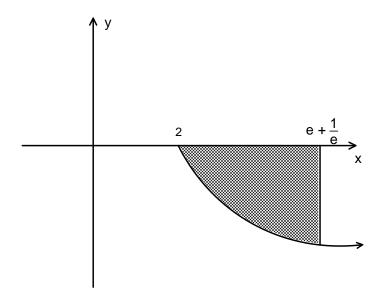
2 2

2

2

Question 14 continues on the following page

c) Below is the graph of $y = \ln\left(\frac{x - \sqrt{x^2 - 4}}{2}\right)$



- (i) Show that the equation of the inverse function is given by $y = e^x + e^{-x}$.
- (ii) Hence find the area of the shaded region above. 3

2

End of Paper.

M. Choice.

1)-B 2) A 3) B 4) D 5) D

6) D 7) D 8) A 9) B 10) C

Question 11.

a)
$$\frac{2}{3x-1} \le 1 \quad x \ne \frac{1}{2}$$
 $2(3x-1)^2 - 1(3x-1)^2 \le 0$
 $(3x-1)(2-(3x-1)) \le 0$
 $(3x-1)(3-3x) \le 0$

b) $\frac{2x}{(2x+1)^2} \quad dx \quad dx = 2x+1$
 $\frac{2x}{(2x+1)^2} \quad dx \quad dx = 2x+1$
 $\frac{2x}{(2x+1)^2} \quad dx \quad dx = \frac{2x+1}{2}$
 $\frac{2x}{(2x+1)^2} \quad dx \quad dx = \frac{2x-1}{2}$
 $\frac{2x}{(2x+1)^2} \quad dx \quad dx = \frac{2x-1}{2}$
 $\frac{2x}{(2x+1)^2} \quad dx \quad dx = \frac{2x-1}{2}$

= \frac{1}{2} \left(\frac{u}{u^2} - \frac{1}{u^2} \right) du

```
2015 Ext. 1. TRIAL SOLUTIONS: -
= 1 ( lnu + 1) + c
 = \frac{1}{2} \left( \ln (2x + 1) + \frac{1}{2x + 1} \right) + c /
c) lim sintal
 = \lim_{\chi \to 0} \frac{\sin \frac{1}{2} \chi}{\frac{1}{2} \chi} \cdot \frac{\frac{1}{2} \chi}{3 \chi}
    =\frac{1}{6} \times \frac{1}{3}
d) (2x + \frac{3}{x^3})^8
and tem = 8 (2x) (3x-3) k
          = 8ck 28-K28-K3K2-3K
     : 8-4K=0
                 = 16128
```

```
e) (i) f(0.4) = -0.0267...
  f(0.5) = 0.135....
since f(0.4) <0 pf(0.5)>0/
  a root exists between 0.490.5
(ii) & (x) = 1 + cos 2x
a_1 = 0.4 - \left(\frac{-0.026...}{1.696...}\right)
     = 0.4152.
   a_1 = 0.42.5
f) sin 20 = coso
   25100000 - COSO =0
   650 (25ino -1) =0
  Sin0 = 1 Cos0 = 0
 :0=55, 7, 35
```

```
Question 12
2) J 8 51,222 da
=15 8(1 - cos 401) doc /
 = 1 [x - sin 4x] $ /
 =\frac{1}{2}\left[\frac{\pi}{8}-\frac{\sin\frac{\pi}{2}}{\cos\frac{\pi}{2}}-(o-o)\right]
 = 1 [ # - 1]
    = 11-1 0 11-2
     = (0.0713...)
 b(i) 12 = 495 /
 (ii) \frac{6}{6} \times \frac{6}{6} = 225
(111) Alteration = 4!x31/
Total 7!/
                      = 1
35
(or equivalent)
```

```
e)(i) T= C+Aekt -> Aekt = T-C-(id)(i(3)(s)-.. (2n+1) = (2n+1)!
  dT = kAekt + from 1
      = & (T-c)
  . T= C+Aettis a sol'n
(i) When t=10 T=36 C=20
   - 36 = 20 + Ae 10 K
      . Ae 10K = 16, -0
when t = 20 T= 30
      10 = Ae20K/
            = KeZOR
      =\frac{\ln(\frac{5}{8})}{(=-0.047)}
 Subinto (20)
       A = 25.6 /
    T=20+25.6e
    when t =0
       T = 20+25.6 e
       = 45.6.
```

Prove true for n=0 $\begin{array}{ccc} L + s & = & (2(0)+1)! \\ 2(0)+(1) & = & 20.0! \end{array}$ Store LHS = RHS (true for n=0) Assure true for n=k ie (1)(3)(5)--(2k+1)= (2k+1)! Step3 Prove for n=k+1.1e (1)(3).... (2k+1)(x+3) = (2k+3)(2k+1 (x+1)) ie $\frac{(2k+1)!}{2^k k!} \cdot (2k+3) = \frac{(2k+3)!}{2^{k+1}(k+1)}!$ $=\frac{(2k+1)!(2k+2)(2k+3)}{2^{k}k!(2k+2)}$ $= \frac{(2k+3)!}{}$ 2 K! 2 (KH) -= (2k+3)!2 k+1 (k+1)! stor = RHS. True for n=k+1 if the for nek. Therefore the

a)
$$P(x) = x^3 - 6x^2 + kx - 8$$

(i) $A^2 p + 4 p^2 +$

(iii)
$$y = px + a$$
 $y = px + a$ $y = px + a$ (iv) $y = px + a$ $y = px + a$ $y = ap^2 + ap^3$

$$x + p^2x + ap = 2ap + ap^3$$

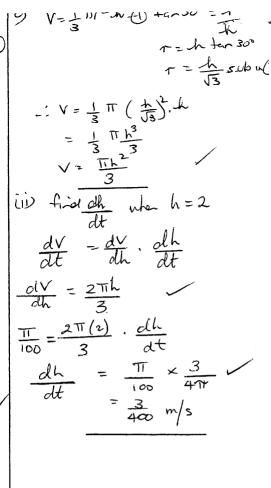
$$x + p^2x + ap = 2ap + ap^3$$

$$x = ap(p^2 + r)$$

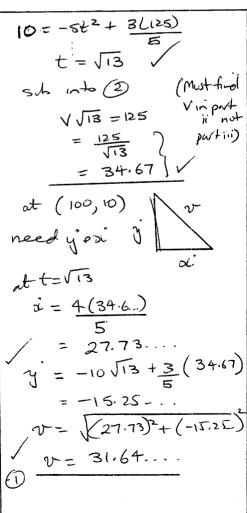
$$x = ap(p^2 + r)$$

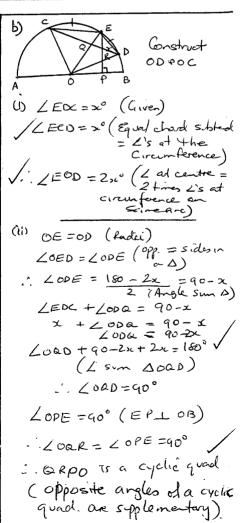
$$x = ap^2 + a$$

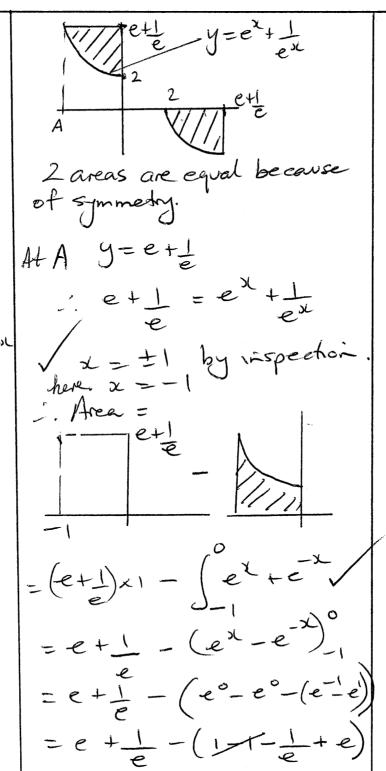
$$y = ap^2 + a$$



$$\frac{3}{2} = 0$$







NB AWARD 2 for $\int_{-1}^{0} e^{X} + e^{-X} = e^{-\frac{1}{2}}$ $AWARD 2 \int_{0}^{1} e^{X} + e^{-X}$ $= e^{-\frac{1}{2}}$